

Numerical Optimisation Methods An Introduction

Hywel Owen Daresbury Laboratory

What's in the talk

- Optimisation some definitions
- Traditional optimisation methods minimisation and all that
- Recent methods annealing and genetics

The design process

- Design is creating something to fit a purpose from toothbrushes to accelerators.
- A design is judged to be good by quantifying how good it is compared to other designs.
- The space of possible designs is termed the *Configuration Space*.
 - Generally quantifiable via some variables.
- The 'goodness' of the design is termed the *Objective Function*.
 - Must be quantifiable if we wish to do an optimisation, but can be a ranking scheme.

Optimisation

- Optimisation is the improving of a design. This means either maximising an Objective Function F, or equivalently minimising - F
- Division between Constrained and Unconstrained, and Discrete and Continuous.
- Constrained Optimisation means that the configuration space is divided into Feasible and Non-Feasible solutions.
- Strong link with mathematics of functions.

One Dimension (One Variable)

 X_2

One Dimension

- Analogous to root-finding methods, e.g. dF/dz=0.
- Many methods Secant, Brent's, Newton-Raphson etc. Some (e.g. Newton-Raphson) require calculation of the local gradient of the function.
- All require the Objective
 Function to be reasonably well-behaved, e.g. smooth and roots reasonably far apart.

Multiple Dimensions

- The objective function can be thought of as a surface in two dimensions.
- Higher dimensions can be thought of in an analogous way.

Cauchy Method of Steepest Descent

- Requires that the local gradient of the objective function F can be calculated in some way
- Choose point <u>P</u>₀
- Move from P_i to P_{i+1} by minimising along the direction
 ∇F
- Use conjugate gradient method to reduce number of steps

Cauchy Method of Steepest Descent

The Downhill Simplex Method (Nelder & Mead, 1965)

- Simplex geometrical figure in n dimensions, with n+1 vertices.
 - Triangle in 2 dimensions, tetrahedron in 3 dimensions...
- Choose starting point \underline{P}_0 , and create simplex by adding each of the unit vectors \underline{e}_i for each vertex.
- Evaluate *F* for each vertex. Choose new simplex.

The Downhill Simplex Method (Nelder & Mead, 1965)

Powell's Direction Set Method (Powell, 1964)

- Choose starting point \underline{P}_0 , and set of direction vectors $\underline{u}_i = \underline{e}_i$ e.g. each of the parameters
- Along each <u>u</u>_i, minimise the objective function F to give <u>P</u>_i
- Cycle \underline{u}_i values, e.g. $\underline{u}_i = \underline{u}_i + 1$
- Set <u>u</u>_N= <u>P</u>_N <u>P</u>₀
- Move \underline{P}_N to minimum along \underline{u}_N and call it new \underline{P}_0

Example - MAD Matching Module

- Objective Function is called Penalty Function, which is minimised. Weighting is accomplished by multiplying the constraint by the weight in the penalty function calculation.
- Three methods used:
 - MIGRAD and LMDIF
 calculate numerical
 derivatives of either the
 penalty function as a whole or
 of each of the individual
 constraints
 - SIMPLEX uses the Simplex algorithm.

12.6 Matching Examples

12.6.1 Simple Periodic Beam Line

Match a simple cell with given phase advances:

```
QF: QUADRUPOLE,...
QD: QUADRUPOLE,...
CELL1: LINE=(...,QF,...,QD,...)
```

USE,CELL1 CELL

VARY, NAME=QD[K1], STEP=0.01 VARY, NAME=QF[K1], STEP=0.01

CONSTRAINT, PLACE=#E, MUX=0.25, MUY=1/6

MIGRAD, CALLS=2000

ENDMATCH

The Problem - Local vs. Global Minima

- All of the previous methods are Hill-Climbing strategies. Once you're on the top of the nearest hill, you can't get any higher.
- Q: How do you find the highest point?

Back to The Map Analogy

Finding Global Minima - Random Search

- Choose points randomly in the configuration space.
 Unintelligent, and rarely used by itself.
- However, it is useful for comparing with other methods to see if they're working.
- Of course, over a long enough time the random search is guaranteed to find the optimum solution!

Finding Global Minima - Stochastic Hill-Climbing

- Instead of just climbing up the nearest hill and you can also make random steps, retaining the move if the fitness is improved.
- Easy to implement and fast, but is 'noisy' if there are many small peaks.

Simulated Annealing (Metropolis, 1953)

- Analogy with thermodynamics a liquid cooled slowly forms a large crystal where the atoms are nearly at their minimum (optimum) energy state.
- Key to optimisation process is slow cooling, where there is time for movement to the lowest energy state - this is annealing.
- The previous methods correspond to quenching.

Simulated Annealing – Principles (Metropolis, 1953)

 Boltzmann distribution gives probability of system being in a state of energy E,

$$P(E) \sim \exp\left(\frac{-E}{kT}\right)$$

 Simulated annealing gives probability of transition from energy E1 to E2 with probability

$$p = \exp\left[\frac{-\left(E_2 - E_1\right)}{kT}\right]$$

Simulated Annealing – Implementation (Metropolis, 1953)

- The algorithm uses the following elements:
 - 1. A definition of the configuration space.
 - 2. A generator of random changes in the configuration.
 These are the energy 'options' presented to the system.
 - 3. An objective function E (analog of energy) to minimise.
 - 4. A control parameter T (analog of temperature) and an annealing schedule - how large and how often the downward steps in T are.
- High T gives high P of moving to a worse state explores configuration space.
- Low T gives settling to final optimum.

Simulated Annealing: The Travelling Salesman Problem

- A classic problem in optimisation

 how does the salesman travel
 the least distance while only
 visiting each city only once?
 - Shortest Hamiltonian Cycle
- Start with an initial path and perform changes to reduce objective function.
- With infinitely slow cooling the shortest path is definitely found.
- This class of problem is NP-Complete
 - NP: Polynomial Time
 - The only sure solution is exhaustive search.

$$E = L = \sum_{i=1}^{N} \sqrt{(x_i - x_{i+1})^2 + (y_i - y_{i+1})^2}$$

An Aside - DNA Computers

- Adleman (1994) showed that DNA computers can solve complex problems requiring extremely parallel processing.
- The Travelling Salesman problem is one of these socalled NP-complete problems.
- DNA pieces representing possible steps are allowed to combine in random sequences.

Hamiltonian Cycle Problem going through every vertex with the shortest path

An Aside - DNA Computers

- Every possible sequence is tried.
- Sequences of short length (low M) and with the right start and end points are selected for amplification (PCR). The final product shows the shortest path.
- This method scales to large numbers of steps which cannot be solved on ordinary computers.

All possible paths

Shortest Path

Genetic Algorithms (Holland, 1975)

- The concept is a Population of points in configuration space.
- Each point <u>P</u> is represented by a Gene
 - a binary representation which can be decoded to give the Phenotype – i.e. the Point <u>P</u> (the 'design')
- The Population is allowed to Evolve with interaction between the individuals.
- Eventually the population will Converge to a fitter region of the configuration space.
- This is how Nature does it!

Basic Genetic Algorithms

 Evolution of the population proceeds through the following steps:

Basic Genetic Algorithms - Reproduction

Reproduction proceeds through crossover:

Basic Genetic Algorithms - Mutation

Mutations are characterised by a Mutation Rate.

Basic Genetic Algorithms - Selection

- Selection can proceed in various ways:
 - 1. Only the best children are kept (no parents kept).
 - 2. Parents and children are ranked together, and only the best are kept.
 - 3. Each child is compared to the parent most like it (using the Hamming Distance), which it replaces if it is better -This method is called Niching.
 - Hamming distance is number of different bits a distance measure
- The method of selection is important as it is obviously nonstochastic. Selection gives pressure toward fitter regions of configuration space.

Basic Genetic Algorithms - Convergence

- The selection procedure and the mutation rate are important for determining how fast the population converges to a particular region of configuration space.
- The convergence rate determines how much 'variety' is tried.
- Strong analogy with Simulated Annealing technique, and with damping and excitation in phase space.
- Selection is analogous to damping, mutation is analogous to noisy excitation.

Basic Genetic Algorithms - Why they Work

- Theoretical foundations well-established. Based on the idea of a Schema - a section of the gene that codes for a particular aspect of the phenotype.
- Schema Theorem:
 - 'Short, low-order, above-average schemata receive exponentially increasing trials in subsequent generations of a genetic algorithm'
- To get the best optimisation, the order of bits in the gene representation should correspond to efficient schemas.
 - i.e. Need to code in a good way.

Genetic Algorithms - Dealing with Numbers

- Numeric parameters can be represented in binary form and encoded into the gene.
- However, ordinary binary representation means that changing one bit has a larger effect than changing another bit.
- This is overcome using the Gray Code form of the binary number.
 - A change in any single bit is equivalent to a change in any other - consecutive numbers have a Hamming Distance of one.

(a)

Gray Coding

Integer	Binary Code	Gray Code
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100

Neighbouring Gray codes have a Hamming distance of 1.

Example: LHC Dipole Yoke Design

 Russenschuck (1998) used genetic algorithms to optimise LHC dipole field quality by changing coil and yoke distributions.

Example: LHC Dipole Yoke Design

- Surprising results obtained.
 Alternatives found to previous 5
 block designs with improved field quality.
- Population size of 60 used.
 Gene length of between 50 and 60 bits.
- Similar design process performed for LHC quadrupoles.

Fig. 4. Coil cross-section for the 5 block (41 turns) design (VY)

Fig. 5. Coil cross-section for the 6 block (40 turns) design (V6-1)

Fig. 6. Coil cross-section for the 6 block (38 turns) design (V6-3)

Example: LHC Dipole Yoke Design

Optimising the distribution of the yoke material

Best at one energy (injection)

Best over energy range

Example: LHC Dipole Yoke Design

Convergence to a fit population:

Example: DIAMOND Storage Ring Design

- Partial cancellation of chromatic sextupoles over 4 cells using appropriate phase advances
- 4 families of harmonic sextupoles to achieve full cancellation
- AP-SR-rpt-062 and -063 describe in detail

Sextupole Families

Defining the Objective Function

- Calculating the full dynamic aperture too costly in time
- Therefore define Objective Function *F* by:
 - Tracking 32 turns, on-momentum, in 1-D x and y
 - Find amplitude in x and y where stability <32 turns
 - Mean value is F.
- Need to trust the objective function is related to the real dynamic aperture (on- and off-momentum) that we are interested in
 - i.e. Trust it is a real 'Quality Factor'

Implementation of Genetic Algorithm

- Use classical GA
- 4 sextupole strengths □ 36 bit string representation
- Population = 100
- No. of generations > 200

Comparison with Hand Optimisation

Quality Factors and All That

- We can see that on-momentum, the performance of the genetic optimisation is broadly similar.
 - Remember, there was no 'intelligence' behind the GA it started from completely random choices of sextupole settings
- Off-momentum the performance is similar but maybe not so good.
 - We can see differences, the GA can't
- Moral make sure the Objective Function has the following properties:
 - Uses a true 'Quality Factor'
 - Contains all the factors we care about

Evolutionary Algorithms/Programs and Hybrid Systems

- Often it is inconvenient to binary code numeric parameters.
 Instead perform 'genetic-like' operations on parameter sets
- Many different ways of doing this called Evolutionary Algorithms and other names.
- Theoretical basis poor but they work.
- Hybrid Systems utilise GA or EA methods, and use traditional optimisation (e.g. Simplex) to fine-tune the solution.

Example – Finding an Isochronous Arc

- 4GLS ERLP requires an isochronous arc
- We can define the arc by a set of assumed parameters:
 - Energy
 - Total Deflection Angle
 - Dipole and Quadrupole Lengths
 - Outer Quadrupole Spacings
- Then have free parameters:
 - L₃
 - B₁
- B₂, k₁, k₂, L₁, L₂, depend on these for isochronous solution

First-Order Isochronous Equations

$$R_{56} = \int_{s_1}^{s_2} \frac{D(s)}{\rho(s)} ds \quad R_{56|_{\text{outer}}} = \rho_1(\phi_1 - \sin\phi_1)$$

$$R_{56|_{\text{central}}} = D_j \sin(\phi_2/2) - \rho_2 D'_j [\cos(\phi_2/2) - 1] + \rho_2 [\phi_2 - \sin(\phi_2/2)]$$

$$L_1 = a \frac{C_2 q_1}{C_1 q_2} (L_3 - \frac{D_j}{D'_j} + q_2) - l + q_1 \qquad l = \rho_1 \tan(\phi_1/2), \qquad a = -D'_j / \sin(\phi_1),$$

$$L_2 = q_1 - q_2 + \frac{b}{L_3 - D_j/D'_j + q_2},$$

$$\rho_1 = \frac{E}{B_1 ce}, \quad \rho_2 = -\frac{NEl_m}{2ceNl_m B_1 + E\theta_t},$$

$$\phi_1 = \frac{cel_m B_1}{E}, \quad \phi_2 = \frac{\theta_t}{N} - \frac{2cel_m B_1}{E},$$

$$B_2 = \frac{E\theta_t}{ceNl_m} - 2B_1.$$

Optimisation by Direct Search

- Some values of the free parameters have no solution
- We also want a global view of the dependencies
- Objective function is fast to calculate
 - e.g. Minimum of β_x , β_y
- Direct search is therefore a good method
 - Explicitly calculate ALL solutions (over some grid of a particular step size)
 - We then know we have the best solution

Isochronous TBA Results

- A complete scan of all possible solutions has been carried out:
 - 0 m < L < 1 m
 - k_1, k_2 up to 5 m⁻¹
 - Equal B₁, B₂
 - Assumed some lengths

Finding the Optics Solution

- For each Iso solution, scan k₃/k₄
- Choose overall smallest betatron sum
- Starting solution for some field
- Also done by scanning

Which Optimisation Method Is Best?

- Genetic algorithms have distinct advantages over classical single-point optimisation techniques for particular classes of problems:
 - 1. Best area of configuration space is not known
 - 2. Many peaks/discontinuous Objective Function
 - 3. Best solution not required 'good enough' needed
- Hybrid solutions are popular, combining several methods.
- No particular algorithm is best in the general case.

No Free Lunch Theorem (Wolpert and Macready, 1995)

- Important general theorem of search algorithms:
 - 'All algorithms that search for an extremum of a cost function perform exactly the same, when averaged over all possible cost functions.'
- In other words, if algorithm A outperforms algorithm B for some cost functions, then there must exist as many functions where B outperforms A.
- Corollary:
 - The Algorithm must be matched to the Problem.